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Abstract—E-commerce live streaming as an increasingly pop-
ular sales model has generated a significant amount of gross
merchandise value (GMV) for e-commerce platforms. Live
streaming recommendation systems (LSRS) of e-commerce aim
to recommend the most appropriate live channels for users to
motivate them to buy products. Existing LSRS methods focus
only on the user’s interaction behaviors on the live channel (live
domain) while ignoring the user’s behaviors and intentions on
the e-commerce product (product domain). As a result, the user’s
consistent purchase intentions in the cross-domain are not being
fully captured, especially when user present differentiated pur-
chase intentions in the cross-domain. How to disentangle user’s
consistent intentions and domain-specific intentions in the cross-
domain poses a challenge to the LSRS of e-commerce platforms.
In this paper, we present a live channel recommendation method,
named eLiveRec, developed for Taobao, one of the largest e-
commerce platform in the world. Specifically, eLiveRec employs
the disentangled encoder module to learn user’s cross-domain
consistent intentions and domain-specific intentions. Then, an
adaptive multi-task learning framework is developed to jointly
optimize the multiple objectives (e.g., stay time, click goods
bag, and click products after entering channel) related to live
streaming recommendation. In this way, the performance of live
streaming recommendation can be further improved and con-
form to standard industry RS paradigms. Extensive experiments
are conducted on a large-scale industry dataset collected from
Taobao Live platform have been performed. Both online and
offline experimental results indicate that eLiveRec consistently
outperforms existing state-of-the-art baseline methods.

Index Terms—E-commerce, Live streaming, Recommendation
systems

I. INTRODUCTION

The improvement of network bandwidth and the popularity
of portable intelligent mobile devices motivate the emergence
of live streaming, a new form of entertainment that has
occupied most of our fragmented time. Representative live
streaming platforms include TikTok1, YouTube Live2, and
Taobao Live3, which have tens of millions of daily active

∗ These two authors contributed equally to this work.
† Corresponding author
1http://www.tiktok.com
2https://www.youtube.com/live/
3https://taobaolive.taobao.com/
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Fig. 1: A glance of Taobao online live streaming scene.

users. As an emerging media, live streaming has brought
many innovations and new forms of business, e.g., e-commerce
live streaming. According to the survey report4, 840 million
Chinese people shopped online in the past year; 700 million
people, or 68.2 percent of the population, watched the live
streaming. Among them, there are 460 million users of e-
commerce live streaming domain, accounting for 44.9 percent
of the total netizens, with an annual growth rate of 19.5
percent.

With the emergence of e-commerce live streaming, many
traditional businesses also explore a “live streaming + shop-
ping” model. As shown in Fig. 1, the homepage has a series of
live channels, each of which can be mounted with a goods bag,
i.e., a collection of products to be sold. Most of the streaming
contents in the channel are explaining the mounted products.
Meanwhile, the user may interact with product/anchor after
entering the channel.

Live streaming has a profound impact on the daily life
of the public with its advantages of strong real-time perfor-
mance, high participation rate, and fast transmission speed.
As a consequence, some recent studies [1]–[3] focus on the
recommendation of live streaming and shed fresh insight into
this emerging field. Furthermore, E-commerce live streaming
provides viewers with richer interactive experience in the

4https://report.iresearch.cn/report/202207/4029.shtml
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Fig. 2: Illustration of consistent and domain-specific purchase
intent presented by user in the cross-domains.

virtual shopping scene, experiencing unprecedented growth,
especially during the COVID-19 pandemic period. Nowadays,
“live streaming + shopping” has become the pillar business
of the Taobao platform. Unfortunately, there is little specific
research has been conducted on e-commerce live streaming.
Which is more challenging for balancing the entertainment
attributes with motivating users to purchase products than
LSRS. Exactly, the distinctive characteristics of the scene also
raise the following challenges:

• User’s intentions are complex and inconsistent across
two domains. For example, in Fig. 2, we show an
example about the user’s behaviors and potential inten-
tions. Specifically, the user may have consistent intentions
in both product and live domains (i.e., Sportwear and
Snacks), while retaining specific intentions in each do-
main (i.e., Fast Foods in product domain, Adorable Pets in
live domain). Due to the significant differences between
them, most existing methods fail to disentangle user’s
consistent intentions and domain-specific intentions.

• Directly modeling the multiple objectives related to live
streaming recommendation is difficult. From Fig. 1, we
can observe that the interactions between users and chan-
nels/products have a naive hierarchical structure. Firstly,
the user watches a certain channel in the candidate pool-
ing, which is called intra-channel behavior. Meanwhile,
the user clicks the products or goods bag mounted in
the channel, which behaviors are called inter-channel
behaviors. Inter-channel behavior, which is related to the
current channel, plays a variable role in the recommenda-
tion. However, the process of heuristically exploring the
correlation degree of different behaviors with no pattern
to follow, which only achieves sub-optimal performance
and even brings negative effects.

In this paper, we propose a novel e-commerce live stream-
ing recommendation model, named eLiveRec, which mainly
focuses on solving the aforementioned challenges. Specifi-
cally, eLiveRec utilizes disentangled representation learning
to model the user’s consistent intentions and her domain-
specific intentions in both product and live domains. This helps

effectively exploit user’s behavior data in product domain to
improve the performance of live streaming recommendation.
Moreover, inter-channel behavior predictions are considered
as auxiliary tasks while intra-channel behavior prediction as
the primary task. Auxiliary tasks are adaptive accommodated
by a weighting network to quantify the consistency of each
auxiliary task with respect to the primary task.

The main contributions made in this work are as follows:
• To the best of our knowledge, this is the first study

investigating e-commerce live streaming recommenda-
tion, which have a positive impact on both community
development and business value.

• We propose to disentangle user’s consistent intentions and
domain-specific intentions. To that end, we design a dis-
entangled encoder, which can effectively disentangle the
representations through introduced regularization terms.

• An adaptive multi-task learning framework is also de-
signed to jointly optimize user’s intra-channel behavior,
as well as her inter-channel behavior.

• We have performed extensive experiments on a large-
scale dataset collected from Taobao Live streaming plat-
form. Both online and offline experimental results demon-
strate that the proposed eLiveRec method consistently
outperforms state-of-the-art baseline methods.

II. RELATED WORK

In this section, we review the most relevant existing works
about live streaming recommendation, cross-domain recom-
mendation, and multi-task recommendation.

A. Live Streaming Recommendation

Recently, live streaming, as a newly emerging social media,
has already attracted researchers’ attention to this spot. Some
recent work focus on the recommendation task by analyzing
user-channel interaction patterns. [2] studies recommendation
in this setting of a dynamically evolving set of available items.
[3] aims to simultaneously perform prediction through a bi-
directional prediction framework from two sides, viewer and
anchor. [1] captures the matching of the anchor’s and viewer’s
preferences and extract the related features for their repre-
sentations. [4] combines probabilistic matrix factorization
model with deep learning model to extract useful features from
interactions for watching duration prediction. To sum up, the
mainstream methods focus on learning user representations
and making recommendations through sequential modeling.

As an online service deployed in the ranking phase, we
perpetuate the paradigm of the CTR prediction task. One
stream is about modeling the high-order interactions between
different features. Wide&Deep [5] is the first deep learning
method to model explicit and implicit feature interactions.
Furthermore, DeepFM [6] replaces the wide net with FM [7].
After that, a series of works [8], [9] are proposed to model
the feature interactions more effectively. The other stream of
models focus on mining sequential patterns from consecutive
user behaviors. DIN [10] is the representative work that
leverages target attention network for user’s interest modeling.
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As the successor, DIEN [11] aims to capture evolving user
interest. CAN [12] explores the potential of feature co-action
based on DIEN. BST [13] and ETA [14] propose to use multi-
head attention mechanism to learn a deeper representation.
Other various models [15], [16] are also proposed.

Nonetheless, none of the work is concentrated on the e-
commerce live streaming field, which there are inevitable
interactions between users, live channels and products. How
to tackle new challenges for the new scene (i.e., inconsistent
intentions across domains and hierarchical behavior structure),
that is the focus of our work as opposed to existing methods.

B. Cross-Domain Recommendation

Cross-domain recommendation systems [17] have emerged
to utilise the relatively richer information, i.e., user/item in-
formation, reviews, tags and observed ratings, from the richer
(source) domain to improve the recommendation accuracy in
the sparser (target) domain.

Some popular methods are often based on transfer learn-
ing techniques to transfer the user/item embeddings from
the source domain for providing enhanced recommendations,
which includ CCCFNet [18], CoNet [19], DDTCDR [20]
and etc. These methods assume that auxiliary user/item in-
teractive behaviors across different domains will benefit the
user modeling of target domain. Meanwhile, several recent
studies MiNet [21], DASL [22] aim to address cross-domain
sequential recommendation task by modeling user intention
from consecutive behaviors across domains.

While these cross-domain sequential recommendation mod-
els achieve significantly better performance over the classical
models, they mainly focus on modeling sequential patterns
across domains, without considering the gaps between differ-
ent domains as well as inconsistent intentions. Therefore, in
this paper, we model user’s consistent intentions and domain-
specific intentions in the cross-domain setting by adopting
the disentangled representation learning paradigm, which has
applied on various fields, e.g., computer vision [23], natural
language processing [24], recommendation system [25]–[27].

C. Multi-Task Recommendation

In e-commerce recommendation scenes, addressing certain
business proposal may lead to various optimization objectives.
A common strategy is to synchronously train primary tasks,
CTR prediction in most cases, and the related auxiliary tasks
of different objectives. Among them, some typical multi-task
learning models [28], [29] aim to improve the performance
across all tasks by designing more effective shared-bottom
module structure. Recent works [30], [31] propose to balance
the joint learning of all tasks through adaptive strategy to
avoid the situation where one or more tasks have a dominant
influence on the shared-bottom network. In the LSRS of
E-commerce, other than the classical CTR metric, several
important second-hop metrics are also used to evaluate the
effectiveness of the method, e.g., stay time. More specifically,
the inter-channel behaviors occur only after the user enters the
live channel, which is different from traditional multi-tasks. In

response to the above, we proposed a weighting network to
learn adaptive weights for different auxiliary tasks to address
the challenge of hierarchical behaviors, which related with live
streaming recommendation.

III. PRELIMINARIES

The top priority of personalized e-commerce live streaming
recommendation is to estimate the probability that a viewer
would like to watch a specific live channel. Furthermore, we
estimate the probability of user interaction in the specific
channel. We use user’s recent behaviors to help model her
long-term dynamic preferences. In this work, a user’s recent
behaviors include her recent clicked products and recent
watched live channels. Moreover, the real-time atmosphere of
the live channel affects the user’s real-time preferences in the
certain channel, which leads to the interactive behaviors in
this channel. All behaviors include staying, and commenting,
liking, following the channel anchor, and purchasing, clicking
mounted products, etc.

We denote the target live channel by vt, the i-th interaction
behavior in the target channel by ai,vt , the user’s prod-
uct clicked sequence and live channel watched sequence by
S = {s1, s2, · · · , sn} and V = {v1, v2, · · · , vl}, respectively,
where n and l denote the length of each sequence. The live
channel prediction task can then be formalized as follows,

p(vt|S, V ) ∼ fintra(S, V, vt), (1)

where the user is represented by her recently interacted prod-
ucts S and live channels V , and p(vt|S, V ) is the probability
that the user would like to watch the target live channel vt
. Moreover, fintra is the module function of Intra-channel
Behavior Modeling used to estimate p(vt|S, V ).

The interaction behaviors prediction task in the target chan-
nel can also be formalized as follows,

p(ai|S, V, vt) ∼ finter(ai, S, V, vt), (2)

where ai is the i-th behavior. Here, we only keep stay
time, click goods bag and click products three behaviors for
simplicity. And p(ai|S, V, vt) is the probability that the user
performs interaction ai within the target channel vt. Similarly,
finter is the module function of Inter-channel Behavior
Modeling used to estimate the probability.

IV. THE PROPOSED ELIVEREC MODEL

Fig. 3 shows the overall structure of the proposed eLiveRec
model. Next, we introduce the main components of eLiveRec
in details.

A. Embedding Initialization

Data instance is a crucial element of real-world recom-
mender system. Each instance is typically presents a multi-
filed form, including user profile, spatiotemporal context,
clicked products sequence, watched channels sequence, target
channel, target channel real-time context, label. Each field is
composed of multiple characteristics: user profile contains user
id, nickname and so on; spatiotemporal context contains time,
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Fig. 3: The overall framework of the proposed eLiveRec model, which formed by cascading Embedding Initialization, Intra-
channel Behavior Modeling, and Inter-channel Behavior Modeling. In addition, an Adaptive Multi-task Learning Framework
is used to jointly optimize intra- and inter-channel behaviors.

scene and so on; clicked product contains goods category id,
brand id and so on; watched channel contains channel id, top
goods category and so on; target channel contains channel id,
channel anchor and so on; target channel real-time context
contains real-time products in the channel, the revenue during
window time and so on. It is worthy to note that, we take
user profile and spatiotemporal context as static context, while
target channel real-time context as dynamic context.

The raw features are usually represented as high-
dimensional sparse vectors by combining multiple one-hot
characteristics. We use the common operation Embedding
transforms the sparse feature into dense valued vector for
facilitating follow-up calculations. Then, the embedding ma-
trix of clicked products sequence can be represented by
ES = [es1 , es2 , · · · , esn ] ∈ Rn×d, the embedding matrix
of watched channel sequence can be represented by EV =
[ev1 , ev2 , · · · , evl ] ∈ Rl×d similarity. Besides, the embedding
vector evt denotes target channel, ec denotes static context,
ed denotes dynamic context for the sake of formulation.

B. Intra-channel Behavior Modeling
The intra-channel behavior modeling module consists of ba-

sic sequence encoder, disentangled encoder, and intra-channel
behavior prediction components.

1) Basic Sequence Encoder: The existing works has made
plenty of attempts in sequence modeling. The sequence en-

coder can be implemented by many models like RNNs [32],
CNNs [33], GNNs [34], [35] and self-attention networks
[13], [36]. We also employ traditional sequential model to
encode user’s sequences from both product and live domain.
Specifically, we choose stacking the Transformer blocks as the
backbone to model the user’s interactive sequences. Given the
item representation Hℓ−1 at the (ℓ− 1)-th layer, the output of
Transformer encoder at the ℓ-th layer is as follows,

Hℓ = FFN
(
Concat(head1, · · · , headh)Wh

)
,

headi = Attention
(
Hℓ−1WQ

i ,H
ℓ−1WK

i ,Hℓ−1WV
i

)
, (3)

where FFN(·) represents feed-forward network, h rep-
resents the number of heads, the projection matrices
WQ

i ,W
K
i ,WV

i ∈ Rd×d/h, Wh ∈ Rd×d. Here, we omit
the Residual Network and layer normalization, which used to
avoid overfitting, for convenience. The attention mechanism is
calculated as follows,

Attention(Q,K,V) = softmax
(QK⊤

√
d

)
V, (4)

where Q represents the queries, K represents the keys, and V
represents the values. The factor

√
d plays a regulatory role.

Specifically, we use the embedding matrix ES and EV as
the initial state respectively. Based on several Transformer
blocks, we can obtain HS = [hs1 , hs2 , · · · , hsn ] ∈ Rn×d and
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live domain as example.

HV = [hv1 , hv2 , · · · , hvl ] ∈ Rl×d respectively, which omit
the superscript ℓ for brevity.

2) Disentangled Encoder: Intuitively, we model the user’s
sequential representations from both product and live do-
mains respectively. However, due to the gap between different
domains, user may show consistent intentions and domain-
specific intentions in different domains occasionally, which
illustration in Fig. 2. To deal with the issue, we disentangle
the sequential representations to yield consistent intentions
and domain-specific intentions respectively. We describe the
module by the example of consistent intentions of live domain.
The structure of disentangled encoder is shown in Fig. 4.

Intention Weighting. In order to model the user’s cross-
domain intentions, we should map user’s behaviors into con-
sistent intentions and domain-specific intentions respectively.
We firstly create two prototypes embeddings oc,V , os,V ∈ Rd

by mean pooling and max pooling on the EV to denote con-
sistency and specificity respectively. In practice, the pooling
prototypes is superior to [25], [26], which using learnable
parameters follow a Gaussian distribution as prototypes. Then,
we assign weights to each behavior in order to differentiate
between two components, namely the consistent and the spe-
cific components, based on their distance from two intention
prototypes.

p(zc,vi
|vi) =

exp(hvi ⊙ oc,V )∑
o∈oc,V ,os,V

exp(hvi ⊙ o)
, (5)

where ⊙ denotes the element-wise product, zc,vi denotes
the consistent component of channel vi, the attention weight
p(zc,vi |vi) measures how likely the channel vi is related with
the consistent intention.

User Behaviors Retrieval. According to [14], the large
amount of noise in user’s histories causes the failure of
sequential modeling. So the most relevant and appropriate
user behaviors should be retrieved from the user’s historical

sequence. We now introduce intention-related retrieval weights
to measure how important of the position i-th channel for
modeling the user’s consistent/specific intentions. Target at-
tention [10], [14], [37] is widely applied on CTR prediction
tasks. Similar to the eq.4, target channel acts as query (Q)
and consistent intention-related component zc,vi

acts as key
(K) and value (V ). The probability p(c, vi) is obtained by
activation of softmax function,

p(c, vi) =
exp(evt · zc,vi

T )∑
vi′∈V exp(evt · zc,vi′

T )
. (6)

Specifically, the user’s consistent intentions of live domain can
be computed as follows,

zc,V =
∑
vi∈V

p(c, vi) · p(zc,vi
|vi) · hvi , (7)

where zc,V denotes the user’s live domain consistently in-
tention representation, p(zc,vi

|vi) measures how likely the i-
th historical channel related with the consistently intention
representation, which is described above. Therefore, we can
aggregate the intentions collected at the sequences according
to p(zc,vi |vi) and the important score p(c, vi). Similarly,
zs,V , zc,S , zs,S are also obtained by the same process.

Self-supervised Regularization. In order to ensure the sta-
bility of the model in disentangled learning, some regulariza-
tion [25], [38] are proposed to encourage the disentangled
parts to preserve sufficiently different information, to avoid
information redundancy. Although we use refined prototype
embeddings in this module which are naturally different,
there might still be redundancy among the representations.
To further encourage the independence among them, we
adopt the distance correlation [38] as a regularization. The
distance correlation can ensure any two paired embeddings
independent. Formally, we define it as follows:

Lcor =
∑

K∈{S,V }

dCov(zc,K , zs,K)√
dV ar(zc,K) · dV ar(zs,K)

, (8)

where dCov(·) is the distance covariance between two matri-
ces, and dV ar(·) represents its own distance covariance.

Apart from constraining disentangled learning, we also need
to ensure that the consistent representations from both two
domains are as similar as possible in the latent space. In other
words, we maximize the mutual information [39] between
zc,V and zc,S . According to [40], minimizing the InfoNCE
loss [41] is equivalence to maximizing the lower bound of
the corresponding mutual information. So we adopt InfoNCE
to estimate the mutual information. Formally, for the mutual
information of consistent representations, we consider the
disentangled intention representations zc,V and zc,S of the
same user as the positive pairs, while representations from
different user as the negative:

Lnce = −log
exp(cos(zc,V , zc,S)/τ)∑

zn∼Pn(z)
exp(cos(zc,V , zn)/τ)

, (9)
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where Pn denote the negative sampling distribution, cos(·, ·)
is the cosine similarity function, and τ is the temperature that
is empirically set to 0.5. In practice, there are some alterna-
tive strategies to define the similarity, e.g., cosine distance,
euclidean distance. We observe that InfoNCE obtains better
performance comparing with cosine/euclidean distance in our
practices.

The final self-supervised regularization is as follows,

Lreg = λ1Lcor + λ2Lnce, (10)

where λ1 and λ2 are hyper-parameters to control the strengths
of self-supervised regularization.

3) Intra-channel Behavior Prediction: Intra-channel behav-
ior prediction is a typical CTR prediction task. To predict
whether a user click the target channel vt, we model it as
a binary classification problem. By concatenating the embed-
dings of static context ec and the output of the disentangled
encoder (zc,V , zs,V , zc,S , zs,S) applying to the target channel
evt , which is called Intra-channel Embedding. Besides, we
use three MLP layers to further learn the interactions among
the dense features, which is standard MLP tower in industrial
RS practice [10], [11]. Then we use the sigmoid function as
the activation unit and adopt cross-entropy loss for the binary
classification task.

Lrec = −ylog(p(vt|S, V ))− (1− y)log(1− p(vt|S, V )),
(11)

where y ∈ {0, 1} is the ground-truth label indicating whether
the user watches the channel or not, p(vt|S, V ) representing
the predicted probability of the target channel being watched.

C. Inter-channel Behavior Modeling

The inter-channel behavior modeling module consists of
embedding gate unit, and inter-channel behavior prediction
components.

1) Embedding Gate Unit: Historical behaviors record de-
scribe the long-term preferences of the user, while real-time
preferences are described by the dynamic context of the target
channel (i.e., products, live streaming efficiency, anchor) that
the user sees after entering the channel. Furthermore, the user’s
inter-channel behaviors are influenced by both long-term and
real-time preferences simultaneously. Inspired by the gated
linear unit (GLU) [42], we adopt an embedding gate unit
to select what long-term preferences are relevant to real-time
preferences, which are utilized to improve the prediction task.

As for the concatenated representation Intra-channel
Embedding, we can regard it as a feature set F =
(ec, evt , zc,V , zs,V , zc,S , zs,S), where Fi denotes i-th feature
in the set F . We use a two-layers MLP network to learn the
importance scores of different long-term features in set F ,
which takes signals related to dynamic context as inputs and
outputs weights,

wi = σ(MLP (ed,ΘFi
)), (12)

where ΘFi denotes the parameters related to Fi, the MLP
network would generate a weight wi through sigmoid activa-
tion σ, the redefined representation was denoted as Fi ·wi. By
concatenating the redefined long-term preferences embeddings
and real-time preferences embeddings ed, we can obtain Inter-
channel Embedding and regard it as the shared input for
Multi-gate MoE [29] module.

2) Inter-channel Behavior Prediction: We choose three
important indicators, stay time, click goods bag and click prod-
ucts to construct the inter-channel behavior prediction tasks.
Among them, stay time is considered as a regression task, and
the other two behaviors are considered as binary classification
tasks. Given yai

as the ground truth for behavior ai, i ∈ {stay
time, click goods bag, click products}, the prediction of
behavior ai is represented as ŷai (i.e., p(ai|S, V, vt)) yielded
through Multi-gate MoE layers. As for classification tasks,
additional activation function sigmoid needs to be introduced.
Moreover, we use cross-entropy loss and mean-squared loss to
calculate corresponding loss Ltaski

respectively.

Ltaski
=

{
−yai

log(ŷai
)− (1− yai

)log(1− ŷai
) , C

(yai − ŷai)
2 , R

(13)

where C, R represent classification and regression, respec-
tively. As a LSRS of E-commerce, we directly adopt the Multi-
gate MoE layers as the shared bottom network, which is widely
adopted in both academia and industry like Google [29] and
Tencent [43]. A separate gating network is used to selectively
utilize different combinations of experts for a specific auxiliary
task.

D. Adaptive Multi-task Learning Framework
In this work, our primary task is to estimate the probability

that a viewer would like to watch a specific channel (i.e., intra-
channel behavior prediction), while the inter-channel behaviors
prediction tasks are considered as auxiliary tasks. And the
role of the other tasks is to assist in generalization of the
primary task. The naive approach [44] to combining multiple
auxiliary tasks would be to simply perform a weighted linear
sum of the losses for each individual task. However, the
process of exploring the weights of auxiliary tasks seems to be
too heuristic and irregular, which may cause some problems.
Firstly, as the number of auxiliary tasks increases, computa-
tional consumption becomes very expensive. Secondly, using
fixed weights may limit or even hurt the performance.

We proposed a weighting network to learn weights for
different auxiliary tasks thought quantifying the consistency
of each auxiliary task to the primary task. Specifically, we
quantify the consistency by measuring the cosine similarity of
gradients between the auxiliary task and the primary task. The
weighting network is a two-layers MLP network, which takes
signals of current task’s data as input and outputs the weight.
We define the weighting network as follows,

wtaski
= MLP ((s(∇θLrec,∇θLtaski

),Ltaski
, typei),Θtaski

),
(14)
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where s(·, ·) represents cosine similarity function,
∇θLrec,∇θLtaski are the gradients vector of the primary
task and i-th auxiliary task loss with respect to the shared
parameters respectively, typei is the type embedding of i-th
auxiliary task. Besides, Θtaski

denotes the parameters related
with i-th auxiliary task.

Overall, the joint loss can be formulated as follows,

L = Lrec +
∑
taski

wtaski
Ltaski

+ Lreg, (15)

where wtaski
is the output of the weighting network. The

regularization term Lreg of disentangled learning are not
involved in multi-task learning module. The problem in Eq. 15
is solved by a gradient descent algorithm. We also consider the
iterative optimization manner, we leverage the regularization
term Lreg to optimize the encoder module. After that, we
update all parameters by Lrec +

∑
taski

wtaski
. However, the

performance is not satisfactory.

V. EXPERIMENTS SETTINGS

In this section, we describe dataset used in our experiments,
baseline methods, evaluation metrics and implementation de-
tails.

A. Dataset

We use a real-world dataset collected from the Taobao Live
platform of Alibaba Group5. It contains large-scale online live
streaming behaviors of users, which cover several consecutive
days of users’ interactive records on live streaming from
the Taobao mobile App’s log during September 2022. The
dataset is constructed by sampling from the impression and
click logs of the online traffic. Each record consists of a
record ID, a user ID, a channel ID (exposure to user), a
timestamp, an interaction flag (watched the channel or not),
and two sequences of the user’s watched channels and clicked
products, respectively. Among them, we use the staying time
to filter the channels and delete the records with staying time
below the threshold. In addition, we truncate the sequence
lengths into 50. The samples from the consecutive periods are
used to construct the training set, and the samples from time
immediately following the training set are used as the testing
set. The statistics of the dataset are shown in Table I.

B. Baseline Methods

We compare the proposed eLiveRec method with two cate-
gories of competitive baselines: CTR models and cross-domain
models.
CTR Models.

• WDL+ [5]: This method is a classical industrial RS
model, which is composed of wide model and deep
model. Besides, we create WDL+ by incorporating se-
quential information into the base model.

5https://www.alibabagroup.com/

TABLE I: Statistics of the experimental dataset.

DatasetIndex Traning Testing

#Unique feed 1.40 × 108 2.45 × 107

Impression 1.08 × 109 1.92 × 108

Watched 1.27 × 108 2.27 × 107
Avg. impression / feed 7.71 7.86
Avg. watched / feed 0.91 0.93
Avg. product sequence length 47.47 47.44
Avg. channel sequence length 41.29 40.66

• DIN6 [10]: This method uses the mechanism of attention
to capture the similarities between the target item and the
previous clicked item.

• DIEN7 [11]: This method uses two-layer RNNs with
attention mechanism to capture evolving user interests.

• HGN8 [45]: This method uses a hierarchical gating net-
work for sequential recommendation, which works well
with its simple gated linear unit (GLU) structure.

• BST [13]: This method leverages the Transformer struc-
ture with time information for e-commerce product rec-
ommendation.

• CAN9 [12]: This method leverages co-action unit to
model the feature interaction between user behaviors and
recommended item.

• ETA [14]: This method proposes a end-to-end target
attention to retrieval user behaviors. Besides, we create
ETA without long-term interest extraction unit due to
online inference real-time constraints.

Cross-Domain Models.
• MiNet10 [21]: This method jointly models three types

of user interests from different domains and utilizes two
levels of attentions to fuse these interests.

• DASL11 [22]: This method proposes dual embedding to
represent the cross-domain user and dual attention to
model the cross-domain sequential pattern.

• CoNet+12 [19]: This method leverages the cross connec-
tion units to enable dual knowledge transfer across do-
mains between base networks. Besides, we create CoNet+
by incorporating sequential information into the model as
user’s general feature.

• DTCDR+12 [46]: This method designs an adaptable
embedding-sharing strategy to combine and share the em-
beddings of common users across domains. Besides, we
create DTCDR+ by incorporating sequential information
into the model as user’s content.

• DDTCDR+13 [20]: This method develop a novel latent
orthogonal mapping to extract user preferences over

6https://github.com/zhougr1993/DeepInterestNetwork
7https://github.com/mouna99/dien
8https://github.com/allenjack/HGN
9https://github.com/CAN-Paper/Co-Action-Network
10https://github.com/oywtece/minet
11https://github.com/lpworld/DASL
12https://github.com/RUCAIBox/RecBole-CDR
13https://github.com/lpworld/DDTCDR
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multiple domains, Besides, we create DDTCDR+ by
incorporating sequential information into the model as
user’s general feature.

C. Evaluation Metrics

We adopt four commonly used performance metrics
for evaluation, i.e., AUC, gAUC [10], Precision@K
(Prec@K) and Normalized Discounted Cumulative Gain@K
(NDCG@K). We calculate Prec@K and NDCG@K accord-
ing to the record of watched or not. According to Table I, the
average impression/watched for a feed is about 7.7 and 0.9
respectively, we experientially set K to 10. The larger value
of above metrics indicates better performances.

D. Implementation Details

All the evaluation methods are implemented with Tensor-
Flow14 1.4 in Python 2.7, and is conducted on Alibaba’s
distributed cloud platform. For the offline model training, we
conduct distributed training through PS-Worker architecture
using CPU, where the number of PS and Worker are 40
and 400, respectively. The model is optimized by distributed
training through parameter slicing, etc., where each ps/worker
uses 10GB memory. As for online inferring, a single GPU
worker with only 32GB memory is used through optimizations
such as fp16. For our model, the number of dimensions d is
set to 128, set the number of heads in all multi-head attention
blocks to 8, the batch size is set to 2048, the initial learning
rate is set to 0.05 and we use Adagrad with accumulator
decay for optimization. The hyper-parameters for the two self-
supervised regularization λ1 and λ2 are chosen from {0.001,
0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 1.0}. In the implementation of
vanilla MTL framework, set the weight of the three auxiliary
tasks to be 0.3, 0.3 and 0.1 respectively. For baseline methods,
we implement each method as following the original papers
and report performances under its optimal settings.

VI. EXPRIMENTS RESULTS

In this section, in order to study the validity of the proposed
eLiveRec, we conduct experiments to answer the following
research questions:

• RQ1: Can the proposed eLiveRec achieve the best rec-
ommendation performance compared with baselines?

• RQ2: What are the effects of different model components
and experimentally settings?

• RQ3: How does the proposed eLiveRec perform on the
live streaming online platform?

• RQ4: What insight can the case study provide?

A. Overall Performance (RQ1)

We implement a variant model eLiveRecwo.M of our pro-
posed model eLiveRec, which denotes without adaptive multi-
task learning. Based on the CTR baseline methods we chose
to compare, we further implemented the corresponding dual
sequence variant, i.e., Dual CTR Model group. Specifically,
we model the user’s channel sequence and product sequence in

14https://www.tensorflow.org/

TABLE II: The recommendation performance achieved by
different methods. The best results are in boldface, and the
second best results are underlined.

Group Model AUC gAUC Prec@10 NDCG@10

Single
CTR Model

WDL+ 0.8224 0.7246 0.4261 0.3795
DIN 0.8176 0.7194 0.4254 0.3782

DIEN 0.8206 0.7226 0.4260 0.3780
HGN 0.8236 0.7271 0.4268 0.3798
BST 0.8215 0.7254 0.4264 0.3811
CAN 0.8206 0.7230 0.4264 0.3779
ETA 0.8304 0.7383 0.4291 0.3854

Dual
CTR Model

WDL+ 0.8248 0.7298 0.4270 0.3814
DIN 0.8199 0.7233 0.4261 0.3790

DIEN 0.8231 0.7268 0.4269 0.3800
HGN 0.8251 0.7302 0.4273 0.3808
BST 0.8310 0.7411 0.4289 0.3862
CAN 0.8235 0.7270 0.4268 0.3796
ETA 0.8338 0.7451 0.4304 0.3873

Cross-domain
Model

MiNet 0.8278 0.7359 0.4279 0.3843
DASL 0.8236 0.7267 0.4266 0.3801

CoNet+ 0.8335 0.7460 0.4301 0.3879
DTCDR+ 0.8354 0.7499 0.4309 0.3893

DDTCDR+ 0.8319 0.7420 0.4297 0.3870
eLiveRecwo.M 0.8368 0.7506 0.4314 0.3891

eLiveRec 0.8398 0.7562 0.4327 0.3911

parallel, and combine the user preferences learned separately
for recommendation. It aims to capture user’s preferences in
both two domains and optimize live recommendation task with
the product domain as a supplement.

Table II summarizes the performance comparison results.
Overall, the proposed model outperforms all baseline methods
on the industry dataset, in terms of all evaluation metrics.
Moreover, we also have the following observations.

Firstly, we verify the necessity of modeling dual sequences.
From Table II, the Dual CTR Model group methods signifi-
cantly outperforms the Single CTR Model group methods. It
shows that supplementing user intentions in product domain
with more behaviors can improve recommendation perfor-
mance in live domain with less behaviors. Furthermore, it
verifies the necessity of cross-domain intention modeling for
LSRS of e-commerce.

Secondly, we observe an interesting point that the perfor-
mance of some cross-domain recommendation models (MiNet
and DASL) don’t superior to some excellent CTR models with
dual sequences. The possible point is that the better backbone
models are adopted, BST and EAT are multi-head attention
architecture based method. Another line, EAT is significantly
better than DIN, which result also confirms the conclusion.
In addition, we create variant cross-domain sequential model
(i.e., CoNet+, DTCDR+ and DDTCDR+) by incorporating
sequential information into the base mode for fair comparison,
which achieve competitive performance than MiNet and DASL
due to the using of multi-head attention to model user’s
sequences. Meanwhile, these models also benefit from the
cross-domain transferred knowledge with better performance
almost than the all models of Dual CTR Model group.

Thirdly, with a simple but effective gated linear structure,
HGN’s performance is barely satisfactory. Unfortunately, both
of DASL and DDTCDR+ don’t perform as expected, which
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TABLE III: Ablation study of the disentangled encoder.

Variant AUC gAUC Pre@10 NDCG@10

BSTDual 0.8310 0.7411 0.4289 0.3862
ETADual 0.8338 0.7451 0.4304 0.3873

eLiveRecwo.P 0.8378 0.7519 0.4323 0.3900
eLiveRecwo.C 0.8375 0.7508 0.4308 0.3893
eLiveRecwo.N 0.8358 0.7488 0.4309 0.3883
eLiveRecwo.D 0.8343 0.7460 0.4302 0.3881

eLiveRecCos 0.8325 0.7438 0.4294 0.3850
eLiveRecEnc 0.8255 0.7337 0.4278 0.3795

eLiveRecSR 0.8022 0.6933 0.4142 0.3668

eLiveRec 0.8398 0.7562 0.4327 0.3911

means that the alternating optimization paradigm of self-
supervised objectives maybe not suitable for the industrial
scene of e-commerce live streaming. This also suggests that
some new insights need to be injected into emerging industrial
practices.

Fourthly, the variant model eLiveRecwo.M is superior to the
cross-domain methods and Dual CTR Model group methods.
This shows that our model learns more fine-grained user rep-
resentation through the disentangled encoder and outperforms
the baseline methods. Besides, the performance of eLiveRec is
better than eLiveRecwo.M , which illustrates the effectiveness
of inter-channel behavior modeling with hierarchical structure
through adaptive multi-task learning.

B. Ablation Study and Analysis (RQ2)

Moreover, we also perform ablation study to investigate the
impacts of different components and different settings of the
proposed method.

1) Disentangled Encoder: To study the importance of se-
qunce disentangled encoder of eLiveRec, we consider the fol-
lowing eLiveRec variants for evaluation: 1) eLiveRecwo.P : we
use learnable parameters as prototype embeddings, rather than
obtained by pooling operation; 2) eLiveRecwo.C : we remove
the constraint of disentangled learning, i.e., distance correla-
tion; 3) eLiveRecwo.N : we remove the constraint of mutual
information, i.e., infoNCE; 4) eLiveRecwo.D: we remove the
whole disentangled encoder module; 5) eLiveRecCos: we use
cosine distance as the self-supervised regularization term to
instead infoNCE; 6) eLiveRecEnc: we use euclidean distance
as the self-supervised regularization term to instead infoNCE;
7) eLiveRecSR: we also attempt to adopt regularization terms
that minimize the mutual information between domain-specific
representations zs,V and zs,S . We report the performance of
the variants in Table III.

Table III summarizes the performance of eLiveRec variants
and the competitive model BST, ETA. We can note that
eLiveRec outperforms the variant model eLiveRecwo.D. This
indicates the disentangled encoder module helps to improve
the live recommendation performance. Moreover, eLiveRec
outperforms eLiveRecwo.C and eLiveRecwo.N , these observa-
tions demonstrate that self-supervised regularization can help
learn better representations. Besides, eLiveRec outperforms

TABLE IV: Ablation study of the adaptive multi-task learning.

Model Variant AUC gAUC Prec@10 NDCG@10

DIN
single task 0.8199 0.7233 0.4261 0.3790

vanilla MTL 0.8237 0.7279 0.4269 0.3812
adaptive MTL 0.8235 0.7285 0.4270 0.3810

HGN
single task 0.8251 0.7302 0.4273 0.3808

vanilla MTL 0.8247 0.7275 0.4267 0.3812
adaptive MTL 0.8265 0.7323 0.4278 0.3820

BST
single task 0.8310 0.7411 0.4289 0.3862

vanilla MTL 0.8260 0.7334 0.4270 0.3834
adaptive MTL 0.8343 0.7460 0.4299 0.3875

ETA
single task 0.8338 0.7451 0.4304 0.3873

vanilla MTL 0.8368 0.7494 0.4308 0.3883
adaptive MTL 0.8371 0.7490 0.4313 0.3889

MiNet
single task 0.8278 0.7359 0.4279 0.3843

vanilla MTL 0.8285 0.7374 0.4283 0.3848
adaptive MTL 0.8298 0.7399 0.4286 0.3862

eLiveRec
single task 0.8368 0.7506 0.4314 0.3891

vanilla MTL 0.8383 0.7551 0.4325 0.3904
adaptive MTL 0.8398 0.7562 0.4327 0.3911

the variant eLiveRecwo.P , which shows that prototype em-
beddings obtained by pooling can distinguish user’s intentions
more effectively. The corresponding variant model is always
inferior when the cosine/euclidean distance is used to replace
InfoNCE as the regularization term. When we try to introduce
self-supervised regularization on domain-specific intentions,
w.r.t., eLiveRecSR, we find that the performance deteriorates
significantly. We guess the possible reason is that the specific
intentions of two different domains may be divergent distribu-
tion in the latent space, and the improper constraints may lead
to the reverse relationship between them resulting a neglect of
diversity.

What’s more, eLiveRecwo.M (find in Table II) achieves
better results that eLiveRecwo.D, which indicates that disen-
tangled encoder dominates the performance of eLiveRec, and
the adaptive multi-task learning module is a complementary
part that can help further improve the recommendation perfor-
mance.

2) Adaptive Multi-task Learning: To study the effectiveness
of the adaptive multi-task learning framework. We choose
representative models DIN, HGN, BST, ETA and MiNet to
compare with our proposed method eLiveRec, and implement
two variants i.e., vanilla weighted multi-task learning and
adaptive multi-task learning on the basis of each model,
denotes vanilla MTL and adaptive MTL, respectively. Table
IV summarizes the results of variant models.

We observe that both vanilla MTL and adaptive MTL almost
perform better than single task, this shows that our foothold is
correct. The inter-channel behaviors with hierarchical struc-
ture is a significant specialty different from the traditional
recommendation, which is helpful for the recommendation
performance. As we can see, adaptive MTL performs better
than vanilla MTL in terms of almost all metrics. The reason
might be that the fixed weights are invariable during the whole
training stage, leading to the multi-task learning dominated
by a particular task and yielding limited improvements on
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Fig. 5: The performance of DIN, HGN, BST, and eLiveRec
with different basic sequence encoders.

primary tasks. Meanwhile, adaptive MTL dynamically adjusts
the weights of different tasks by considering the gradient
similarity between auxiliary tasks and primary task, which
achieve better performance compared with single task.

3) Basic Sequence Encoder: To further investigate the
effectiveness of the proposed eLiveRec, we employ other
structures to build the basic sequence encoder. Specifically, we
consider the following settings of eLiveRec for experiments: 1)
eLive-DIN: we use the DIN as the backbone structure to build
the basic sequence encoder; 2) eLive-HGN: we use HGN as
the backbone structure to build the basic sequence encoder;
3) eLive-BST: The default model that uses the Transformer
block as the backbone structure to build the basic sequence
encoder.

Fig. 5 shows the performance of eLiveRec with different
sequence encoders, as well as the performance of backbone
models. We can observe that eLive-DIN, eLive-HGN, and
eLive-BST outperform the corresponding backbone encoder
models. This indicates that the existing sequential recom-
mendation models can be incorporated into our proposed
eLiveRec. Moreover, using Transformer blocks as basic se-
quence encoder can achiever better performance than other
competitive encoders. Through our main contribution, i.e.,
intention disentangled and adaptive multi-task learning, we can
help further improve the recommendation performance on the
basis of sequential recommendation.

4) Effect on Different Task: In several recommendation
system practices based on multi-task learning, the seesaw
phenomenon may exist, i.e., the metrics of a certain task
increase, while the metrics of another task decrease. We
conduct both online and offline experiments to analyze the
phenomenon. Table V shows the gains of the main metrics
(i.e., AUC of CTR prediction task) and second-hop metrics,
which is the gain of adaptive MTL over vanilla MTL.

We can notice that the performance of the primary task is
improved, while the second-hop metrics have a varying degree
of increase in addition to the stay time during the offline ex-
periment. In contrast, the results of the online inferences show
that an increase of performance in primary task also brings

some improvement in second-hop metrics. Since the higher
probability of user watching the certain channel indicates that
the channel is more in line with user’s preferences, which
leads to a greater tendency for user to stay in the channel and
develop some inter-channel behaviors.

TABLE V: Results from Both Offline and Online A/B Testing.

AUC Stay Time Good Bag Product Conversion Rate Discoverability

offline +0.26% -0.21% +0.39% +0.17% N/A N/A
online +0.62% +0.78% +1.32% +0.24% +0.48% 0.18%

5) Effect on Different Sequence Length: Considering the
importance of hyper-parameters, we also perform experiments
to analyze the impacts of the sequences length. The average
channel sequence length in the training set is 41.29 (detailed
in Table I), and the value after removing repeated channels is
only 27.78. In the live domain, users have a large number of
repeated viewing behaviors, which is quite different from the
traditional scene. Similar situation can also be found in case
study Fig. 8. Considering the strong real-time requirements of
live streaming, sequence length 50 is sufficient to cover the
dynamic preferences for most users.

In this section, we only study the sequence length of product
domain. Fig. 6 shows performance trends with respect to
different interactive product sequence length, we can notice
that the experimental results improve slightly as the sequence
length increases. The performance of the model culminates
when the sequence length is 70 and then gradually decreases.
However, in our other experiments, we choose the truncation
length of 50 to reduce the time complexity of the model, and to
keep consistent with the length of the live streaming sequence
simultaneously.
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0.837

0.84
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Fig. 6: The performance trends of eLiveRec with respect to
different settings of interactive product sequence length.

C. Online Experiments (RQ3)

We conduct an online A/B testing on Taobao Live streaming
platform during September 2022, which is under the bucket
tests. One bucket is selected for baseline and another bucket
for our model. Each bucket serves about 0.5 million users per
day.
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1) Deployment System and Pipeline: In this section, we
introduce the online deployment pipeline of the proposed
method. Fig. 7 illustrates the details of deployment system and
pipeline. For the workflow of offline is illustrated as follows:

A few behaviors of users’ authorized in the Taobao app
would be tracked, which collected and stored as log data
on distributed file system (DFS) of Alibaba. The log data
contain partial information about users’ authorized interactive
behavior. Based on the log data and DFS of Alibaba, we yield
offline training samples by feature generating process. We
implemented eLiveRec with TensoFlow and trained the model
on the Alibaba’s distributed machine learning platform. After
that, the model is exported and deployed in the online platform
to provide services. The workflow of online is illustrated as
follows:

When a user sends an access request on the live streaming
homepage, The Personalization Platform (TPP) extracts the
user’s (i.e., user’s real-time interactive behaviors) and chan-
nel’s (i.e., the statistics during window time, products on sales)
real-time feature, which combines offline features produced by
DFS backflow. The feature profile service processes the both
parts of the features and feeds them to the match service.
A candidate set of channels are retrieved by Basic Engine
according to several retrieval strategies, e.g., collaborative
filtering, embedding similarity. The ranking service ranks the
candidates through our deployed eLiveRec and returns the
ranked list to TPP. The user can finish the whole request
workflow in several milliseconds.

2) Result from Online A/B Testing: We choose ETA with
dual sequence as the online baseline. Both baseline and the
proposed method are applied in the ranking stage of Taobao
Live platform. These methods are loaded with embedding
vector representations of features that have been continuously
updated for almost two years, then fine-tune the embedding
representations using the last one month’s data and learn
the network parameters simultaneously. After better fitting
recent changes in the data distribution, the methods can
provide online services to users. During several days testing,
eLiveRec contributes up to 1.0% CTR of channels, 5.8% CTR
of mounted products and 4.0% conversion rate (page view

translates to turnover) promotion compared with the online
baseline(i.e., ETA with dual sequence). In terms of stay time,
comparable results have been achieved by eLiveRec. Note
that in order to reduce the impact on the online business, we
choose a strong baseline method, although it may lead to less
improvement.

3) Effect of Online Discoverability: Through online ex-
periments, the proposed method shows better performance in
discoverability, which means that channels with no exposure
for a long time can be exposed by the method. In the
7-, 14-, and 30-days exposure discoverability metrics, the
proposed method can achieve more than 1.0% improvement
compared with baseline. Especially in the unpopular group
of live domain has a relatively higher promotion. Similarly,
for low-active users group in the live domain, the stay time,
conversion rate and GMV are improved significantly compared
with high-active users group. For example, conversion rates
increases 28.64 percent in the low-active group and 3.47
percent in the high-active group, and the stay time increases
10.27 percent in the low-active group, while decreased slightly
by 1.08 percent in the high-active group. This shows that the
proposed method can learn user’s fine-grained intentions and
accordingly recommend more personalized channels instead of
more popular channels. That’s because the increased of dis-
coverability exposure means that more unpopular channels that
match user’s intentions are exposed. Online discoverability
has significant value to the ecology of Taobao Live platform,
which can improve the experience of users and anchors to
facilitate a virtuous cycle of the platform simultaneously.

D. Case Study in Online Platform (RQ4)

A case study is conducted on the Taobao Live platform.
For each user, we retrieve her last behavior sequences from
both live domain and product domain. Then, eLiveRec and
ETA with dual sequence are used to rank the candidates and
recommend the top-k to user. Fig. 8 shows two recommen-
dation examples. From the examples, we have the following
observations.

• Firstly, users have a large number of repeated viewing
behaviors in the live domain, which indicates users may
be influenced by the performance style of the live anchor.
Since for the same live anchor, the streaming content
delivered may be different even for two adjacent days.

• Secondly, in the live domain, users tend to browse some
products that need to be displayed, such as clothes.
Anchors can better exhibition the upper body effect after
wearing them, which is also a major advantage of the
e-commerce live streaming scene.

• Thirdly, if the behavior of product domain is not ac-
commodated reasonably in the model, some interactive
behaviors with low interest frequency of users in the live
stream domain would be covered by the major interest
(e.g., autumn clothes in the case). In addition, channels
related to crabs and latex pillows also appear in the
historical behavior of the live stream domain, but they
are not recommended by ETA.
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Fig. 8: Examples of Top-5 ranking by eLiveRec and baseline in online platform.

• Fourthly, when modeling dual sequence by disentangled
encoder of proposed eLiveRec, consistent intentions are
captured and enhanced, such as crab and latex pillow.
Besides, the user had interactions with flowers in the
live domain, and also had a historical interaction with
baby diapers in the product domain, but neither was
recommended. This indicates that consistent intentions
(from both product and live domains) take precedence
over domain-specific intentions. Although the user did
not click the crab, she also has a potential intention for
the crab based on the analysis of her historical behavior.

• Overall, This case shows the advantages of the proposed
eLiveRec compared with competitive model. We can also
observe that in real scenes, user’s intentions are scattered
at times, in which case designing more fine-grained
strategies to learn the user’s intentions will remain a key
challenge of our future work.

VII. CONCLUSION

In this paper, we study the e-commerce live streaming
recommendation task, which is a crucial application of e-
commerce platforms. We proposed a novel recommendation
method, namely eLiveRec, which utilizes user’s behaviors in
the product domain to assist the live streaming recommen-
dation task. More specifically, eLiveRec utilizes disentangled
representation learning to model user’s consistent intentions
and domain-specific intentions in both product domain and live
domain. Moreover, an adaptive multi-task learning framework
is designed for the naive hierarchical structure of intra- and
inter-channel behaviors, which jointly optimizes user’s intra-
channel behaviors, as well as her inter-channel behaviors. Ex-
tensive experiments on a large-scale industry dataset demon-
strate that the proposed eLiveRec method consistently outper-
forms state-of-the-art baseline recommendation methods.
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